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Study on the Li and B Co-doped diamond thin film
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Diamond has been paid a lot of attention because of
its unique properties, such as hardness, chemical inert-
ness, thermal conductivity, and negative electron affin-
ity. In addition, diamond thin films have unique semi-
conductor properties, such as wide band-gap (5.45 eV),
high breakdown field (106–107 Vcm−1), and high
electron and hole mobilities (2000 cm2 V−1 S−1 and
1800 cm2 V−1 S−1, respectively) [1]. To take the ad-
vantage of these excellent properties, synthesis of semi-
conductor diamond films have been extensively stud-
ied. The p-type diamond films have been successfully
fabricated with boron (B) dopant [1]. The fabrication of
the n-type diamond films, however, has not been quite
so successful. The nitrogen (N) [2] and phosphorous
(P) [3, 4] for n-type diamond films were too deep for
donor level. Lithium (Li) [5] and potassium (Na) [6]
were proposed as candidate dopants for the n-type be-
cause those are much smaller than carbon atoms and
can occupy interstitial sites. The doping concentration
of Li, however, is too small when it is diffused into a
single crystal diamond [7]. Another possibility is co-
doping of N and B or hydrogen (H) and P, even though
it is not verified with experimental results [8]. In this
study, we compared the p-type with B-dopant and the
n-type diamond films with the doping of only Li and
also the co-doping effect of B and Li was investigated.

The substrate of diamond growth was a silicon (Si)
wafer which had 〈100〉 orientation, p-type and resis-
tivity of 4–6 �cm. The Si wafer was pretreated with
0.5 µm diamond powder to give nucleation sites fol-
lowed by ultrasonic treatment for 20 min [9]. Diamond
films were fabricated on the Si wafer in a Hot Fila-
ment Chemical Vaporized Deposition (HFCVD) sys-
tem. Tungsten filament was used. The filament temper-
ature was 2100 ◦C during deposition process, measured
with optical pyrometer. The substrate temperature was
1000 ◦C controlled by the distance between the fila-
ments and a substrate [10]. The processing pressure
was 30 Torr (hydrogen gas 98%, methane gas 2%) and
the deposition time was up to 20 hrs. To increase the
dopant density, boron oxide (B2O3) powder for B and
lithium oxide (Li2O) powder for Li on a tungsten boat
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was loaded into the chamber [11, 12]. B2O3 powder of
99.5% and Li2O powder of 99% were made by John-
son Mathey and Junsei Chemical Co. respectively. The
diamond film was treated with hydrogen plasma after
film deposition in HFCVD process chamber for 5 hrs.
The pressure of H2 gas was 30 Torr, tungsten filament
temperature was 2100 ◦C, and a substrate temperature
was 1000 ◦C.

Microstructure and growth rate were studied with
Scanning Electron Microscopy (SEM). For the resis-
tivity measurement of diamond films with four-point-
probe, the silicon substrate was fully etched with HF +
HNO3 solution to eliminate effects of silicon substrate.
The semiconductor type of diamond films was deter-
mined with Hall effect measurements. The dopant con-
centration in a diamond grain was measured with the
Dynamic Secondary Ion Mass Spectrometry (SIMS) at
Charles Evans & Associates in U.S.A. A field emis-
sion property was measured with the Keithley’s Metics
system. The distance of the gap—between anode and
cathode—was 100 µm. And the area of field emis-
sion was 10 mm × 10 mm in vacuum chamber at 2 ×
10−7 Torr.

Fig. 1 showed the SEM plane view of diamond films.
Morphologies are very similar, but the morphology of
Fig. 1(c) was rougher, because of H2 plasma treatment.
Also, impurity-doped films’ grain size is bigger than
undoped films. From the SEM image of cross-sectioned
diamond films, the growth thickness was measured and
is shown in Fig. 2. Growth rates of doped films were
higher than that of undoped film. The previous stud-
ies showed the impurity atoms helped to increase the
growth rate and the quality of the diamond film [13–
15]. Raman spectra were measured at room temperature
over the range from 1100 to 1700 cm−1 as shown in
Fig. 3. There is only one peak at about 1332 cm−1.
It shows that the films are of a very high quality di-
amond [16]. Li doped films had the highest growth
rate and highest intensity of diamond peak on Raman
spectra.

The resistivity and the Hall coefficient are shown in
the Table I. Co-doped film with H2 treatment showed
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Figure 1 SEM micrographs of plane view of diamond films after 20 hrs; (a) a boron-doped diamond film (b) a lithium-doped diamond film (c) a
boron and lithium co-doped diamond film after hydrogen plasma treatment for 5 hrs and (d) undoped diamond film.

Figure 2 The growth rate of diamond film; with (a) doping only Li, (b)
co-doping Li and B followed by hydrogen treatment for 5 hrs, (c) doping
only B, and (d) undoped.

negative sign and so this film seems to be the n-type
semiconductor and has low resistivity. Resistivity of
lithium-doped diamond films with H2 treatment was
about 22 �cm. The resistivity was a little improved as
compared to that of a diamond film without H2 treat-
ment. In the case of co-doped films, the resistivity af-
ter H2 treatment was greatly improved, as shown in
Table I. Even though there are many reports that H2

plasma treatment formed dangling bonds on the sur-

T AB L E I Hall measurement and resistivity results of diamond films

Specimen
Hall coefficient
(cm3/C) Resistivity (�cm)

LiB(H2)a −2.974 × 10−2 0.01–0.02
Li −158.26 37–45
B 5 × 10−3 0.01–0.02

aLiB(H2): Co-doping with Li and B followed by hydrogen plasma treat-
ment.

Figure 3 The Raman spectra of diamond films with (a) only Li doping,
(b) only B doping, (c) Li and B doping followed by hydrogen treatment
for 5 hrs and (d) undoped.

face of diamond films [15, 17], the mechanism is not
yet fully understood in the co-doped film.

The doping level of boron and lithium are shown
in the dynamic SIMS results of Fig. 4. In the case of
B-doped diamond film, the B concentration is about
1020 atoms/cm3 (Fig. 4a) whereas Fig. 4b shows the
lithium level is about 1016 atoms/cm3 and also that it
decreases from the surface to the interior of the film.
The co-doped film results are shown in Fig. 4c. The
lithium level is more uniform from the surface to the
interior of the diamond, 1018 atoms/cm3, and the boron
level is almost the same as (a), i.e., 1020 atoms/cm3.
From this result, the co-doped process helped to im-
prove the stable doping level of Li in diamond films.

Field emission results are shown in Fig. 5. B-
doped diamond film and hydrogen treated co-doped
film, were compared with filed emission characteris-
tics. A field emission phenomenon is analyzed with
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Figure 4 Dynamic SIMS results with (a) boron doped (b) lithium doped
(c) co-doping of Li and B followed by hydrogen plasma treatment dia-
mond films.

Figure 5 Field emission properties of the diamond films with (a) co-
doping of Li and B followed by hydrogen plasma treatment, and (b)
doping of B.

Figure 6 Fowler–Nordheim plot of the diamond films in Fig. 5 (a) with
co-doping of Li and B with hydrogen plasma treatment and (b) doping
of B.

Fowler–Nordheim equation,

J = aE2 exp

(−bφ3/2

E

)

where a and b are constant, J is the electron current
density, E is the applied electric field, and φ is the work

function of the emitter, i.e., diamond film [18, 19]. The
field emission current density of B-doped diamond film
was 1.43 × 10−4 A/cm2 at 1080 V and that of co-
doped film was 2.59 × 10−4 A/cm2 at 1080 V. From
Fig. 6, the emission turn-on voltage of co-doped film
was 226 V but that of B-doped film was 516 V with
100 µm gap. From the result, the co-doped film’s field
emission characteristics were much better than the B-
doped film.

Li and B co-doped process helped the high doping of
Li in diamond and also H2 plasma treatment increased
the electronic performance of the diamond film.
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